n,n-dimethylbiguanide immobilized on mesoporous and magnetically separable silica: highly selective and feasible organocatalyst for synthesis of β-nitroalcohols
نویسندگان
چکیده
an organosuperbase (n,n-dimethylbiguanide) immobilized on mesoporous and magnetically separable silica supports, was found for the first time, to act as a highly-stable, scalable and efficient heterogeneous catalyst for the henry reaction under mild and neutral condition. several factors such as catalyst amount, solvent and reaction time concerning the reactivity were also discussed. the procedure constitutes the first immobilized biguanide promotion of selective synthesis of β-nitroalcohols without addition of stoichiometric amount of any base and showed a broad substrate scope. the uniqueness of this catalyst lay in its cleanness, cost-effectiveness, ease in removal at the end of reaction, and chemoselective formation of a wide range of β-nitroalcohols. these materials can be easily converted to other useful synthetic intermediates which many of them have been exemplified in synthetic organic chemistry and pharmaceutical industry.
منابع مشابه
N,N-Dimethylbiguanide immobilized on mesoporous and magnetically separable silica: Highly selective and feasible organocatalyst for synthesis of β-nitroalcohols
An organosuperbase (N,N-dimethylbiguanide) immobilized on mesoporous and magnetically separable silica supports, was found for the first time, to act as a highly-stable, scalable and efficient heterogeneous catalyst for the Henry reaction under mild and neutral condition. Several factors such as catalyst amount, solvent and reaction time concerning the reactivity were also discussed. The proced...
متن کاملN,N-Dimethylbiguanide immobilized on mesoporous and magnetically separable silica: Highly selective and feasible organocatalyst for synthesis of β-nitroalcohols
An organosuperbase (N,N-dimethylbiguanide) immobilized on mesoporous and magnetically separable silica supports, was found for the first time, to act as a highly-stable, scalable and efficient heterogeneous catalyst for the Henry reaction under mild and neutral condition. Several factors such as catalyst amount, solvent and reaction time concerning the reactivity were also discussed. The proced...
متن کاملFe3O4/FDU-12: A highly efficient and magnetically separable nano-catalyst for oxidation of alcohols
A series of Fe3O4 supported on mesoporous FDU-12 silica systems were prepared by the hydrothermal conditions. The surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like FTIR, XRD, N2 adsorption–desorption and TEM. XRD and adsorption–desorption analysis shows that the mesostructure of FDU silica remains intact after Fe3O4 modifications, wh...
متن کاملFe3O4/FDU-12: A highly efficient and magnetically separable nano-catalyst for oxidation of alcohols
A series of Fe3O4 supported on mesoporous FDU-12 silica systems were prepared by the hydrothermal conditions. The surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like FTIR, XRD, N2 adsorption–desorption and TEM. XRD and adsorption–desorption analysis shows that the mesostructure of FDU silica remains intact after Fe3O4 modifications, wh...
متن کاملFacile synthesis of copper(II) immobilized on magnetic mesoporous silica microspheres for selective enrichment of peptides for mass spectrometry analysis.
متن کامل
[γ-Fe2O3-HAp-(CH2)3-NHSO3H] nanoparticles as a highly efficient and magnetically separable catalyst for green one-pot synthesis of 4(3H)-Quinazolinones
Quinazolinone derivatives are essential units in a wide range of relevant pharmacophores with a broad spectrum of abilities. Due to their wide range of pharmacological and therapeutic activities including anticonvulsant, anti-inflammatory, hypolipidemic, anticancer, and anti-ulcer, the synthesis of quinazolinone moieties as a privileged class of fused heterocyclic compounds, have received much ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of catalysisناشر: islamic azad university, shahreza branch
ISSN 2252-0236
دوره 5
شماره 3 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023